This dataset includes a randomly selected subsample of 5000 online participants who participated in a questionnaire available through the Open Source Psychometrics Project (https://openpsychometrics.org/), an organization that maintains an open website for the public to take psychometric tests for educational and entertainment purposes

dass

Format

a dataframe. Columns represent questionnaire items and rows represent individuals

Details

The Depression Anxiety and Stress Scale (DASS) is a self-report instrument for measuring depression, anxiety, and tension or stress. Each of 42 items falls into one of the three corresponding subscales.

Labels for DASS items in this dataset are denoted by the prefix "dass" and the suffix "_D", "_A", or "_S", indicating the depression, anxiety, or stress subscale.

Also includes demographics such as country, education level, rearing environment (urban/suburban/rural), gender, English as a native language, age, religion, sexual orientation, race, voting status, marriage status, and number of children in one's family during childhood.

The full dataset is publicly available at https://openpsychometrics.org/_rawdata/DASS_data_21.02.19.zip and can be cited as:

OpenPsychometrics (2019). Depression Anxiety and Stress Scale Survey. Retrieved from https://openpsychometrics.org/_rawdata/DASS_data_21.02.19.zip

Examples

head(dass)
#>       dass1_S dass2_A dass3_D dass4_A dass5_D dass6_S dass7_A dass8_S dass9_A
#> 10639       3       3       4       4       4       4       3       3       4
#> 15111       3       3       3       1       4       4       2       2       3
#> 22811       3       3       3       1       4       3       1       4       3
#> 36136       3       1       2       1       2       3       1       3       2
#> 8139        1       1       2       2       1       1       1       1       1
#> 35740       4       2       2       3       3       4       2       4       3
#>       dass10_D dass11_S dass12_S dass13_D dass14_S dass15_A dass16_D dass17_D
#> 10639        3        4        3        4        3        2        3        3
#> 15111        4        3        2        4        4        1        3        3
#> 22811        2        3        1        3        3        1        3        3
#> 36136        2        3        3        3        3        1        2        3
#> 8139         1        2        1        2        2        1        1        2
#> 35740        3        4        4        4        3        2        3        4
#>       dass18_S dass19_A dass20_A dass21_D dass22_S dass23_A dass24_D dass25_A
#> 10639        3        3        4        4        2        4        4        3
#> 15111        3        1        2        2        3        3        3        1
#> 22811        3        2        2        3        3        1        3        2
#> 36136        3        3        3        2        2        2        2        1
#> 8139         1        1        3        2        2        1        2        1
#> 35740        4        3        4        3        3        2        3        4
#>       dass26_D dass27_S dass28_A dass29_S dass30_A dass31_D dass32_S dass33_S
#> 10639        3        4        3        4        2        3        1        4
#> 15111        4        2        1        4        3        4        3        2
#> 22811        3        3        1        4        2        3        2        2
#> 36136        2        3        3        2        2        2        2        2
#> 8139         2        2        1        2        2        1        1        2
#> 35740        3        4        4        3        2        4        2        4
#>       dass34_D dass35_S dass36_A dass37_D dass38_D dass39_S dass40_A dass41_A
#> 10639        4        2        3        4        4        4        4        3
#> 15111        3        4        2        4        4        3        1        1
#> 22811        2        3        3        2        3        2        3        1
#> 36136        2        2        2        2        3        2        3        2
#> 8139         2        1        2        2        1        1        1        1
#> 35740        4        2        3        4        4        2        4        2
#>       dass42_D country         education    urban gender
#> 10639        4      US       High school    Rural Female
#> 15111        4      MY University degree    Rural Female
#> 22811        3      MY   Graduate degree    Urban Female
#> 36136        2      MY University degree Suburban Female
#> 8139         1      MY University degree    Urban Female
#> 35740        3      BN University degree Suburban   Male
#>                           engnat age             religion  orientation  race
#> 10639     Native English Speaker  18 Christian (Catholic)     Bisexual White
#> 15111 Non-native English Speaker  33               Muslim Heterosexual Asian
#> 22811 Non-native English Speaker  25               Muslim Heterosexual Asian
#> 36136 Non-native English Speaker  22               Muslim Heterosexual Asian
#> 8139      Native English Speaker  21               Muslim      Asexual Asian
#> 35740 Non-native English Speaker  20               Muslim Heterosexual Asian
#>       voted           married familysize Depression Anxiety Stress dasssum
#> 10639    No     Never married          2         51      45     44     140
#> 15111    No Currently married          3         49      25     42     116
#> 22811   Yes     Never married          7         40      26     39     105
#> 36136   Yes     Never married          6         31      27     36      94
#> 8139     No     Never married          4         22      19     20      61
#> 35740    No     Never married          4         47      40     47     134
# \donttest{

## Example networktree with DASS
data(dass)
## Select depression subscale
nodeVars <- colnames(dass)[(grep("_D", colnames(dass)))]
splitVars <- c("gender","orientation","race","married","engnat")
myTree<-networktree(dass[,nodeVars], dass[,splitVars])
myTree
#> Network tree object
#> 
#> Model formula:
#> dass3_D + dass5_D + dass10_D + dass13_D + dass16_D + dass17_D + 
#>     dass21_D + dass24_D + dass26_D + dass31_D + dass34_D + dass37_D + 
#>     dass38_D + dass42_D ~ gender + orientation + race + married + 
#>     engnat
#> 
#> Fitted party:
#> [1] root
#> |   [2] engnat in Native English Speaker
#> |   |   [3] race in Asian
#> |   |   [4] race in Arab, Black, Indigenous Australian, Native American, White, Other
#> |   |   |   [5] race in Native American, White
#> |   |   |   [6] race in Arab, Black, Indigenous Australian, Other
#> |   [7] engnat in Non-native English Speaker
#> |   |   [8] gender in Male
#> |   |   [9] gender in Female, Other
#> 
#> Number of inner nodes:    4
#> Number of terminal nodes: 5
#> Number of parameters per node: 91
#> Objective function: 70537.5
plot(myTree)


# }